Journal of the Japanese Society for Sonic Arts, Vol.5 No.3 pp.1-5

Research Report

SPATDIF LIBRARY - IMPLEMENTING THE SPATIAL SOUND
DESCRIPTOR INTERCHANGE FORMAT

Chikashi Miyama
College of Music Cologne
Studio for Electronic Music
me @chikashi.net

ABSTRACT

The development and specification of SpatDIF, the spa-
tial sound descriptor interchange format, is complemented
with an actual software implementation in order to be-
come usable in various environments. In this report, the
current state in the development of a software library
called ‘SpatDIFlib’ is discussed. The design principles
derived from the concepts and specifications of SpatDIF,
the class structure of the library, and code demonstrating
its usage is presented. Furthermore, an application that
utilizes the library is introduced as an exemplary use case.

1. INTRODUCTION

In this article we present the development of a software
tool aimed at simple integration of SpatDIF into existing
software. The concepts and guidelines are implemented in
a C-Library and applied in an example surround-playback
application.

SpatDIF, the Spatial Sound Description Interchange
Format, presents a structured syntax for describing spatial
sound information, addressing the different tasks involved
in creating and performing spatial sound.

The goal of the SpatDIF approach is to simplify and
enhance the methods of creating and exchanging spatial
sound content. SpatDIF proposes a simple, minimal, and
extensible format as well as best-practice implementations
for storing and transmitting spatial sound scene descrip-
tions. It encourages portability and the exchange of com-
positions between venues with different surround sound
infrastructures. SpatDIF also fosters collaboration be-
tween artists such as composers, musicians, sound instal-
lation artists, and sound designers, as well as researchers
in the fields of acoustics, musicology, sound engineering
and virtual reality.

SpatDIF is developed as a collaborative effort and has
evolved over a number of years. The community and all
related information can be found at www.spatdif.org.

2. HISTORY OF THE PROJECT

SpatDIF was coined in 2007 [4] when Peters stated the
necessity for a format to describe spatial sound scenes in
a structured way, since all of the available spatial render-
ing systems used self-contained syntax and data-formats
at that time. Through a panel discussion [1, 3] and other

Jan C. Schacher
Zurich University of the Arts
ICST
jan.schacher @zhdk.ch

Nils Peters

in Music Media and Technology
nils.peters @acm.org

meetings and workshops, the concept of SpatDIF has been
extended, refined, and consolidated.

After a long and thoughtful process, the SpatDIF spec-
ification was informally presented to the spatial sound
community at the ICMC in Huddersfield in August 2011
and at a workshop at the TU-Berlin in September 2011.
The responses in these meetings suggested the urgent need
for a lightweight and easy to implement spatial sound
scene standard, which could contrast the complex MPEG-
4 scene description specification [7]. In addition, several
functions necessary to make this lightweight standard be-
come functional, such as the capability of dealing with
temporal interpolation of scene descriptors as described,
were introduced in [5].

3. CONCEPTS

One of the guiding principles for SpatDIF is the idea that
authoring and rendering of spatial sound may occur at
completely separate times and places, and be executed
with tools whose capabilities cannot be known in advance.
SpatDIF formulates a concise semantic structure that is
capable of carrying all the relevant information, without
being tied to a specific implementation, thought-model or
technical method. SpatDIF is a syntax rather than a pro-
gramming interface or file-format and may be represented
in any of the structured mark-up languages or message
systems that are in use today or in the future. It describes
only those aspects required for the storage and transmis-
sion of spatial sound information. Because a complete
work typically contains aspects that are outside the realm
of such spatial sound description, SpatDIF judiciously
provides interfaces to link these aspects to the spatial di-
mensions. For example, to be able to render the audio
objects with the correct audio content in the spatial scene,
the storage location of the unrendered audio content needs
to be defined via SpatDIF’s media resources.
After establishing a coherent specification with example
use cases in textual form only, the next development step
is the implementation of software that embodies the spec-
ified concepts. For this purpose a platform-independent
software library was designed and is being implemented.
Additionally, to demonstrate the usage of SpatDIF, an ex-
ample application which utilizes this library was created.
This application features SpatDIF file-handling and ren-
dering of SpatDIF sound scenes into multichannel sound
files.

By providing a software library rather than just a com-

Centre for Interdisciplinary Research



Journal of the Japanese Society for Sonic Arts, Vol.5 No.3 pp.1-5

plete software application, implementations in many dif-
ferent software environments are facilitated, which is one
of the strategic goals of the project.

3.1. Example Scene

Referring back to the canonical example ‘Turenas’ by
John Chowning (see also [5]), the beginning of a SpatDIF
example scene, including only the ‘insect’ trajectory at
second 0:44, contains the following elements in an XML
format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?
>
<spatdif wersion="0.3">
<meta>
<info>
<annotation>turenas insect trajectory</annotation>
<date>2013-10-23</date>
<author>jasch</author>
</info>
<extensions>media</extensions>
<ordering>time</ordering>
</meta>
<time>44.0</time>
<source>
<name>insect</name>
<position>0.0 8.0 0.0</position>
<media>
<id>sound_0001</id>
<type>file</type>
<location>/sound/insect.wav</location>
<channel>1</channel>
</media>
</source>
<time>44.078</time>
<source>
<name>insect</name>
<position>1.359056 7.757522 0.0</position>
</source>

Apart from the SpatDIF-compliant XML file, or other
structured markup formatted file, the corresponding sound
files have to be stored and transported alongside, in order
to permit recreation of the scene. It is therefore important
to think in terms of ‘SpatDIF bundles’ or projects rather
than single files. A deliberate choice was made not to
propose a format that combines sound files and scene de-
scriptors in a binary format, since the readability without
additional software tools would be lost.

4. THE LIBRARY

In this and the following sections, the concepts and struc-
tures implemented in the library and the example appli-
cation are described. Although this information is mainly
relevant to software developers, implementing SpatDIF in
audio software, we believe that showing these technical
details also provides an additional perspective on the pos-
sibilities that SpatDIF offers as a syntax.

4.1. Features

SpatDIFLib is an open source C/C++ multi-platform li-
brary, that offers the following functionalities to the de-
velopers of SpatDIF compatible softwares (clients).

— Loading and storing SpatDIF scenes from/to a XML,
JSON, and YAML formatted strings

— Addition, deletion, and modification of entities
(e.g., sources) in SpatDIF scenes

— Addition, deletion, and modification of events
— Associating events with entities

— Activation and deactivation of extensions

— Answering queries in regard to entities and events in
SpatDIF scenes

— Controlling data in SpatDIF scenes via OSC Messages

Though SpatDIFLib can be controlled by OSC [9, 8]
formatted strings, the library does not handle network
sockets directly for the OSC communication; the clients
should prepare sockets and threads for OSC communica-
tion. Likewise no scheduler or timer is implemented in the
library.

4.2. C++ Class Structure

Figure 1 shows the simplified class hierarchy of the li-
brary.

An instance of sdScene class represents a SpatDIF
scene and maintains instances of sdEntityCore. The func-
tionalities of sdEntityCore may be extended by the de-
scendants of sdEntityExtension. The activation and deac-
tivation of the extension are global within a scene. Thus,
sdScene is also responsible for the extension handling.
Each instance of sdEntityCore maintains instances of sdE-
vent, that represent events of the entity they are attached
to. The followings are brief descriptions of the most im-
portant classes.

4.2.1. sdScene

An instance of sdScene maintains all data associated to
a SpatDIF scene. This class offers clients the following
three functionalities.

— Addition, deletion and modification of entities in the
scene

— Addition and modification of the meta data associated
to the scene

— Activation and deactivation of the extensions in the
scene

Once the client activates an extension in a scene, a sd-
Scene automatically adds extended functionalities and al-
locates extra buffers to all existing and newly created in-
stances of sdEntityCore. By deactivating an extension, sd-
Scene removes all extended functionalities and previously
allocated buffers from all existing sdEntitieCores. Sub-
sequently, all data stored in the extension buffers are dis-
carded.

4.2.2. sdLoader/sdSaver

These two classes provide several utility functions and en-
able clients to create an instance of sdScene from a XML,
JSON, or YAML string and vice versa. In order to main-
tain platform independence and to achieve maximum flex-
ibility, the library does not handle files directly; the client
software is responsible for the file management.

These functions utilise two external libraries for pars-
ing markup formatted strings. TinyXML-2! and libj-

son?.

Uhttp://www.grinninglizard.com/tinyxml, accessed Oct. 9. 2013
2 http://sourceforge.net/projects/libjson, accessed Oct. 9. 2013



Journal of the Japanese Society for Sonic Arts, Vol.5 No.3 pp.1-5

Utility classes for storing and loading sdScene from/to formatted strings.

«utility» <utility» sdEntity sdEvent
sdLoader sdSaver eventSet:: <sdEvent*, sdEventCompare> # time:double
+ sceneFromXML (xmlString:string):: * + XMLE! *):string + getEventSet():multiset<sdEvent*, sdEventCompare> # descriptor:enum EDescriptor
+ JSOl ing:string +JS0 1e*):string + start:double, end:double):multiset<sdEvent*, sdEventCompare> # value:void*
+ YAML (yam|String:string) + YAMLI cene: *):string + OfEvents():int + set(time:double,descriptor:EDescriptor, value:void*)
+ getEvent(time:double, descriptor:EDescriptor):sdEvent* + setTime(time:double);
+ getNextEvent(time:double, descriptor:EDescriptor):sdEvent* + getTime():double
+ time:double, EDescriptor, value:void*):sdEvent*; + setValue(descriptor:EDescriptor, value:void*):bool = 0
+ removeEvent(time:double, descriptor:EDescriptor) + getValue():void*
sdOSCResponder sdinfo + removeAllEvents() + getDescriptor():EDescriptor
scene~sdScene ~author + getValue(time:double, descriptor:EDescriptor):void*
- currentTimeString - host
+ forwardOSCMessage(oscMessage:string) - date.
+ setCurrentTime(time:double) - session
T - location
L- annotation |

: F

sdScene
- entityVector:vector<sdEntityCore*>

sdEntityCore

sdEventCore

:vector<enum
- ordering:EOrdering
- info:sdinfo

- name:string
- extensionVector:vector<sdEntityExtension*>

+ getDescriptorAsString():string
+ getValueAsString():string

+ setinfo(info:sdinfo) - redirectorVector:vector<sdRedirector> <>— - setvalue(descriptor:EDescriptor, value:void* ):bool
+ getinfo():sdinfo k| - kind: EKind - setValue(descriptor:string, value:string):bool
+ setOrdering(ordering:EOrdering) - type: EType
+ getOrdering():EOrdering +addEvent(time:double, descriptor:EDescriptor, value:void* ):sdEvent
+ getEntit tor(void):vector: ore*> +removeEvent(time:double, descriptor:EDescriptor)
+ getEntity(name:string):sdEntityCore* time:double, :EDescriptor):sdEvent* SdEnti
+ ity(name:string, kind:EKir ore* +getNextEvent(time:double, descriptor:EDescriptor):sdEvent* - SdEntyExten
: +getValue(time:double, descriptor:EDescriptor):void* extensionType:EExtension
e suing) gerjetiel > pior) - descriptors:vector<EDescriptor>
+ getNumberOfEntities():unsigned int + getDescriptors():vector<EDescriptor>
+ H t eclogr()'vecmr > + getExtensionName():EExtension
+ a . + getExtensionNameAsString()
+ +descriptor:EDescriptor
+ removeAllExtensions() +descriptorString:string
+ getNumberOfActivatedExtensions():int al
+ dump()
dEnti dEventExtensionMedi dEni ‘ DirectToO dEnti ‘ o] Sther
sdEntity sdEventExtensionMedia s ectToOne| 5 polation 1 e ; soon.
+ extensionName:EExtension + getDescriptorAsString():string
+ extensionNameAsString:string + getvalueAsString():string;
+ numberQ escriptors:int + setValue(descriptor:EDescriptor, value:void*):bool
+ relevantDescriptors(]:EDescriptor + setValue(descriptor:string, value:string):bool

+ relevantDescriptorStrings[l:string

+ addEvent(time:string, descriptor:string, value:string):sdEvent*

+ time:double, EDescriptor, value:void*):sdEvent*
+ removeEvent(time:string, descriptor:string)

+ getExtensionName():EExtension

+ getExtensionNameAsString():string

sdEventExtensionDirectToOn| isdEventExtensioninterpolatior

Figure 1. Class structure of the library

4.2.3. sdEvent

This is a pure abstract class of event, that maintains fol-
lowing three data items.

— time - absolute time of the event
— descriptor - type of event

— value - actual data

4.2.4. sdEntity

This is a pure abstract class of entity in SpatDIF scenes.
Basic functionalities, such as addition, deletion, and mod-
ification of events are implemented.

4.2.5. sdEntityCore

An instance of sdEntityCore maintains events with Spat-
DIF core descriptors and has a vector to store instances of
SpatDIF extensions. This class is also responsible for an-
swering queries from the client conceding its events. For
example, if a client asks a sdEntityCore a value of a cer-
tain descriptor at a specific time, the sdEntityCore returns
value to the client. The client is able to raise an query
about multiple events within a certain time frame and fil-
ter events by descriptors. If the client requests values of
extended descriptors, a sdEntityCore forwards the query
to the attached extensions stored in the internal vector.

4.2.6. sdEntityExtension

This is a pure abstract class of extensions. The descen-
dants of this class. e.g. sdEntityExtensionMedia handles
the events with extended descriptors. If a client activates
an extension in a scene, each existing instance of sdEnti-
tyCore instantiates the designated subclass of sdEntityEx-
tension and register it in its internal vector.

4.3. Simple Code Example

The following code listing shows how to load an XML-
formatted string obtained from a SpatDIF file into an sd-
Scene and query the entity called ‘insect’ for the first oc-
currence of an event which contains a position and a media
descriptor.

1 sdScene scene = sdLoader::sceneFromXML (xmlString);

2 sdEntityCore* insect = scene.getEntity("insect");

3 sdEventx insectPositionEvent = insect->
getFirstEvent (SD_POSITION) ;

4 sdEvents insectMedialocationEvent = insect->
getFirstEvent (SD_MEDIA_LOCATION) ;

5

6 cout << "Entity Name: " << insect->getName () <<
endl;

7 cout << "First event is at: " <<
insectPositionEvent->getValueAsString() <<
endl;

8 cout << "Attached Sound File: " <<
insectMedialocationEvent->getValueAsString ()
<< endl;

9 cout << "Attached at: " << insectMedialocationEvent

->getTimeAsString () << endl;

The code produces this console-output:



Journal of the Japanese Society for Sonic Arts, Vol.5 No.3 pp.1-5

Entity Name: insect

First event is at: 0.0 8.0 0.0
Attached Sound File: insect.wav
Attached at: 44.0

The following processes are executed in the example:

— Line 1: sdLoader::sceneFromXML static function loads
a SpatDIF scene from a XML formatted string.

— Line 2: A pointer to an entity, named ‘insect’ is ob-
tained by scene.getEntity member function.

— Lines 3-4: The entity ‘insect’ is requested to return a
pointer to the first event with the position and media
location descriptor.

— Line 6: Querying the ‘insect’ entity for its name

— Lines 7-9: Posting the values and time of events to the
console

The above-mentioned basic class hierarchy is already
implemented in the library. The library is also able to
interpret simple XML, JSON and OSC messages and is
currently examined against the example renderer applica-
tion, in order to further improve its performance. In the
next phase of the project, the complete set of extensions
defined in the SpatDIF specification 0.3 [6] will be imple-
mented and finally a C interface will be added, which will
make this tool applicable to various types of software.

5. THE EXAMPLE APPLICATION

An example application that implements an entire work-
flow for the playback of SpatDIF files is being developed.
The application is called a ‘renderer’ in analogy to vi-
sual tools, because it renders audible, in a surround setup,
the information contained in a SpatDIF ‘bundle’. It also
serves to validate the development of the library, in the
sense of a complex test case that reflects real-life usage.
The implementation has to solve all the question relating
to file-handling, OSC-streams, instantiating the voices of
the playback engine, panning, distance cues, and the other
descriptors present in the specifications 0.3.

More importantly however, it demonstrates the power
and simplicity of SpatDIF by showing how one of the
most common use cases is tackled.

5.1. Scope

In order to provide a relevant example for the applica-
tion of the ‘SpatDIFIib’, the scope of the application has
been limited deliberately. The panning algorithm is a sim-
ple spatial windowing algorithms named “ambipanning”
[2] that is highly flexible, easy to implement, not tied to
a specific number of speakers and usable without modi-
fication both in two and three dimensional spatialization
situations. The application provides a stand-alone imple-
mentation, with a basic visualization of the scene, and the
possibility to play the scene on a stereo or multichannel
speaker setup. It allows to load a SpatDIF file with as-
sociated sound files and play it through a few predefined
multichannel speaker layouts. Currently two mark-up lan-
guages are supported, XML and JSON, with more to come
in the future.

5.2. Implementation Details

This application is implemented in the creative-coding en-
vironment openFrameworks 3 , which provides a powerful
C++ toolset and a thriving community. Since it is not par-
ticularly oriented towards sound programming, the pro-
vided classes are somewhat rudimentary. However — and
that is its strength — many extensions exist and it is rela-
tively easy to add new functionalities and libraries. One
of these extension-libraries that is being used for this ap-
plication is libsndfile *, which provides a powerful audio
file handling toolset. The SpatDIF-library is linked in as
a dynamic library, and provides the entire data-structure
and methods for handling the scene. The renderer runs
both a sonic and visual playback of the scene. The vi-
sual representation is a bare-bones wireframe drawing of
the scene in OpenGL. Figure 2 shows the scene of the
example application. The sound playback runs through
the sound-stream interface provided by openFrameworks.
After retrieving samples from the sound files via libsnd-
file, panning and distance correction is applied, before the
blocks of audio-samples are output. The signal process-
ing chain is deliberately kept simple, to provide a clear
example of the implementation of such a process.

0060

Figure 2. Graphical User Interface of the example ren-
derer application, displaying the Lissajous trajectory from
Chowning’s ‘Turenas’.

5.3. Task Separation between SpatDIFLib and the
Client Application

The separation of labour between the library and a client
application such as the example renderer presented here is
very deliberate.

SpatDIFLib builds and maintains in memory the Spat-
DIF scene, either obtained from an already existing de-
scription stored in a file, or on-the-fly in real time from
elements received via OSC-formatted network packets. It
also provides an application programming interface (API)
that hides most of the complexity of handling the scene
data. Two reading and two writing interfaces are planned

3 http://www.openframeworks.cc, accessed Oct. 23. 2013
4 http://www.mega-nerd.com/libsndfile, accessed Oct. 23. 2013




REFERENCES

for the library, one interfacing the file-system and the
other providing the network-interface via OSC-packets.

The client application is in charge of loading the text
files containing the SpatDIF-scene from the file system
and handing them to the library in a text buffer. It deals
with all the audio related processes, such as loading au-
dio files, playing them back, and configuring the audio-
system. Some of the information necessary to do this is
provided by the SpatDIF scene. In addition, the client
application can open network sockets and forward OSC-
formatted data to the library. It queries the library for
scene information at initialization as well as at runtime,
based on its own scheduler.

6. AVAILABILITY

Both the library and the example application will be made
freely and publicly available, as soon as the full feature-set
of the 0.3 specifications are implemented and thoroughly
tested. Of course, access to the code-base can be granted
on demand.

7. ACKNOWLEDGEMENTS

This software development would not have been possible
without the generous support of the Institute for Computer
Music and Sound Technology ICST of the Zurich Univer-
sity of the Arts.

References
[1] Gary S. Kendall, Nils Peters, and Matthias Geier.
“Towards an Interchange Format for Spatial Audio

Scenes”. In: Proc. of the International Computer
Music Conference. Belfast, UK, 2008, pp. 295-296.

Martin Neukom and Jan Schacher. “Ambisonics
equivalent panning”. In: Proc. of the International
Computer Music Conference. Belfast, UK, 2008,
pp. 592-595.

Nils Peters. “Proposing SpatDIF - The Spatial Sound
Description Interchange Format”. In: Proc. of the
International Computer Music Conference. Belfast,

UK, 2008, pp. 299-300.

Nils Peters, Sean Ferguson, and Stephen McAdams.
“Towards a Spatial Sound Description Interchange
Format (SpatDIF)”. In: Canadian Acoustics 35.3
(2007), pp. 64-65.

Nils Peters, Trond Lossius, and Jan C Schacher.
“The Spatial Sound Description Interchange Format:
Principles, Specification, and Examples”. In: Com-
puter Music Journal 37.1 (2013), pp. 11-22. DOL:
10.1162/COMJ_a_00167.

Nils Peters, Jan C. Schacher, and Trond Los-
sius. Specification of the Spatial Sound Descrip-
tion Interchange Format (SpatDIF) V. 0.3. http :
/ / redmine . spatdif . org/ projects /
spatdif/files.2010-2012.

E.D. Scheirer, R. Vaananen, and J. Huopaniemi.
“AudioBIFS: Describing audio scenes with the
MPEG-4 multimedia standard”. In: IEEE Transac-
tions on Multimedia 1.3 (1999), pp. 237-250.

(2]

[4]

[8] Andy Schmeder. Everything you ever wanted to
know about Open Sound Control. Tech. rep. Mar.

2008.

David Wessel, Matthew Wright, and John Schott.
“Intimate musical control of computers with a vari-
ety of controllers and gesture mapping metaphors”.
In: Proceedings of the Conference on New Inter-
faces for Musical Expression. Dublin, Ireland, 2002,
pp. 192-194.

8. AUTHOR’S PROFILES

Chikashi Miyama

Chikashi Miyama is a composer, video artist, inter-
face designer, performer. He received a MA (Sonol-
ogy/2004) from Kunitachi College of Music, Tokyo,
Japan, a Nachdiplom (Komposition im Elektronischen
Studio/2007) from Music academy of Basel, Switzerland,
and a Ph.D (Composition/2011) from University at Buf-
falo, New york, USA. His compositions have received an
ICMA award (2011/UK) from the International Computer
Music Association, a second prize in SEAMUS commis-
sion competition (2010/St. Cloud, USA), a special prize
in Destellos Competition (2009/Argentina), and a honor-
able mention in the Bourges Electroacoustic Music Com-
petition (2002/France). Several works of him are included
on the DVD of the Computer Music Journal Vol.28 by
MIT press, and ICMC official CD/DVD(2005/2011). In
2011, he received a research grant from DAAD (Ger-
man Academic Exchange Service) and worked as a vis-
iting researcher at ZKM, Karlsruhe, Germany. He has
taught computer music at University at Buffalo, USA
and College of Arts Bern, Switzerland. He is currently
teaching at College of Music and Dance Cologne, Col-
lege of Music Basel, and Zurich University of the Arts.
http://chikashi.net

Jan C. Schacher

A doublebass-player, composer and digital artist, Jan
Schacher is active in electronic and exploratory music.
His main focus is on works combining digital sound
and images, abstract graphics and experimental video in
the field of electro-acoustic music and in mixed-media
projects for the stage and in installations. Jan Schacher
has been invited as artist and lecturer to numerous cul-
tural and academic institutions and has presented instal-
lations in galleries and performances in clubs and at fes-
tivals such as the Sonar Festival (Barcelona), Edinburgh
Festival, the Singapore Arts Festival, the Holland Festival
(Amsterdam), the Sonic Circuits Festival, Washington DC
and numerous venues throughout Europe, North America,
Australia and Asia. He is an associate researcher at the
Zurich University of the Arts and doctoral candidate at
the Royal Conservatory Antwerp. He has published peer-
reviewed articles in the context of computer music, new
interfaces for musical expression as well as on the topic
of artistic research.



