
INTRODUCTION OF DIPS3 (VERSION 2) FOR MAX/MSP

Takayuki Rai Chikashi Miyama Shu Matsuda
Lancaster University

Lancaster Institute for the
Contemporary Arts

t.rai@lancaster.ac.uk

Electronic Studio Basel
chikashimiyama@mac.com

Takayuki Hamano
Takuto Fukuda

Kunitachi College of Music

Digital Art Creation
Kunitachi College of Music

Yota Morimoto
The Institute of Sonology,

Royal Conservatory, The Hague

ABSTRACT
DIPS (Digital Image Processing with Sound), was
released publicly in 2000 in order to support the creation
of interactive multimedia art. However, while it realizes
sophisticated real-time image processing in the Max/
MSP environment and quite effective interaction
between sound and visual events the number of DIPS
users have been limited because DIPS is based on
OpenGL technology and users are required to know
OpenGL programming technique. In this new version,
'DIPS3 version 2 for Max/MSP', while we introduce
several new features we attempt to reduce the burden of
DIPS programming task for ordinary creators.

1. INTRODUCTION
DIPS was developed in 1997 by Shu Matsuda for SGI
computers, and in 2006 we released the third generation
of DIPS ‘DIPS3’ for Max/MSP’ environment running on
a Macintosh computer. Since DIPS is based on OpenGL
technology a certain knowledge of OpenGL is essential.
But, nowadays we realize less and less composers and
creators practice not only OpenGL programming but
also common computer language programming while
they intend to employ more and more complicated
image processing technique as well as signal processing
in real-time. Therefore, in this release, the second
version of DIPS3 for Max/MSP, we decided to realize
much more user friendly programming environment
with two of DIPS sub-patch libraries as well as to
introduce Apple's Core Image technology and OpenGL
Shading Language programming environment. In this
paper we will discuss the following new features of
DIPS3 version 2;

 - New DIPS Utility Objects
 - DIPS Core Image Objects
 - OpenGL Shading Language
 - DIPS Sub-patch Library
 - DIPS Visual Effect Library

2. NEW DIPS UTILITY OBJECTS

Several new DIPS common utility objects are
introduced in this release. These include;
‘DIPSQTPlayer’ object that plays back a Quick Time
movie file stored on a hard disk or via Internet,

'DIPSMovieRecord' object that enables to record
DIPSWindow rendering event in real-time on a hard
disk as a movie file, 'DIPSWindowMixer' object that
realizes to mix several sub DIPSWindows, and
‘DIPSQCRenderer’ object that imports the Quartz
Composer files.

Figure 1. example of DIPSWindowMixer patch
 and its main window

Figure 2. sub DIPSWindows mixed in the patch in
 Figure 1

We also implemented the capability of rendering text
to this release as shown in Figure 3.

Figure 3. example of text rendering using
 DlibText object

 176

Beside these new utility objects, the DIPS help file
structure has been also revised. By just creating a DIPS
object called ‘DIPS’ in a patch users can access to the
list of all DIPS objects and to each help file. Now it
opens without causing any conflicts of DIPSWindow
names as it did before.

3. DIPS CORE IMAGE OBJECTS
Apple's Core Image Technology is implemented as DCI
objects (DIPS Core Image objects), thus users can
utilize about 100 Core Image Filters in DIPS patches.
Since most of DCI objects have a GUI interface to
control various parameters it is easy to activate these
filters.

Figure 4. example of DCI object patch

Each DCI object is built with a single DCI object
'DCIFilter'. Because of this structure new and custom
made Core Image filters can be implemented
immediately without difficulty.

Figure 5. example of DCIFilter sub-patch

4. OPENGL SHADING LANGUAGE

OpenGL Shading Language(GLSL), also known as ‘GL
slang’ is a high level shading language, which allows
developers to control the graphics pipeline directly
without having to use assembly language or hardware-
specific languages. The DIPS3 environment offers the
user objects to easily edit, compile, and employ GLSL.
(see Figure 6.)

4.1. Four essential objects for GLSL
GLSL on DIPS consists of four objects;

 ‘DGLShaderEditor’, ‘DGLVertexAttrib’,
 ‘DGLUniform’, and ‘DIPSUseProgram’.

The names of these objects, except DGLShaderEditor,
are based on names of OpenGL 2.1 functions.

•DGLShaderEditor
A Cocoa-based editor for coding both vertex and
fragment shaders. This object is also responsible for
creating shader and program object, compiling the
codes, attaching shader objects to program object,
linking these objects, and detecting errors in the
source codes.

•DGLVertexAttrib
This object allows the user to modify correspondent
attribute-qualified variables declared in the vertex
source code.

•DGLUniform
This object allows the user to modify correspondent
uniform-qualified variables declared in the vertex
source code.

•DGLUseProgram
The compiled GLSL program will be executed when
this object receives a bang message.

The first argument of these four objects is the ‘name’
of the shader. If there are several shaders
(DGLShaderEditors) in one DIPS patch,
‘DGLVertexAttrib’, ‘DGLUniform’, and
‘DGLUseProgram’ distinguish the correct
‘DGLShaderEditor’ object, by using the defined names.

Figure 6. GLSL objects integrated in a DIPS patch

4. 2. Interactive programming interface
 for GLSL DGLShaderEditor

 177

The DGLShaderEditor allows users to work with the
source code interactively. (See Figure 7.)

Usually, a GLSL program consists of two kinds of
source-code: vertex shader and fragment shader. With
the DGLShaderEditor it is possible to switch between
the two source-codes using the tabs on the top of the
edit-window. The “compile” button automatically makes
two shader objects, compiles the source-codes, attaches
them to the program object, and links them.

Figure 7. example of DGLShaderEditor Interface
Moreover, it is not necessary to stop the rendering

process to compile GLSL source code. Users are able to
check the results immediately after the compile.

5. DIPS SUB-PATCH LIBRARY

While the DIPS GLSL feature may delight experts in
OpenGL programming the new DIPS sub-patch library
meets a demand from ordinary creators. DIPS Library
(Dlib), a new set of DIPS sub-patches, is added to this
distribution. Most of Dlib objects have a GUI interface.

Figure 8. example of Dlib object
 with the graphical interface

Therefore, users may be able to control some parameters
of the DIPS objects graphically. This library reduces the
burden of DIPS programming task significantly.

By using DIPS library objects fewer numbers of
DIPS objects as well as less numbers of arguments in
each DIPS object are required in the patch. Here is an
example of how the Dlib object reduces the number of
DIPS objects in the patch. Figure 9 shows the DIPS
patch programmed with only ordinary DIPS objects. The
rendering result is shown beside it as well.

Figure 9. patch example with ordinary DIPS objects

On the other hand Figure 10 shows the patch
programmed using Dlib objects to produce the same
rendering result as Figure 9.

Figure 10. patch example using Dlib objects

As the two examples show the ordinary DIPS patch
requires more than 40 objects while the patch
programmed with Dlib objects requires about 15
objects. A burden of DIPS programming task can be
reduced dramatically with this Dlib feature.

6. DIPS VISUAL EFFECT LIBRARY
We also distribute the DIPS visual effect library (Dfx)
that contains several attractive visual effects such as
Gaussian Blur, Radial Blur, Recursive Blur, etc.. Since
those Dfx objects are programmed using the OpenGL
method they are cheaper and work more smoothly than
being realized with pixel calculations. Users can employ
sophisticated visual effects with a single Dfx object
without any difficulties. Most of them have GUI control
possibility as well. And we include these objects as
abstract (DIPS sub-patches) so that users can study

 178

complex DIPS programming technique by looking
inside of Dfx objects as well as Dlib objects.

Figure 11. example of DfxInvtile object

Figure 12. example of DfxRadialBlur object

7. CONCLUSION
This second version of DIPS3 is especially intended for
composers and artists who don't know OpenGL so well
but like to practice more matured interactive multimedia
art with real-time image processing technique. We
attempted to realize much more user friendly
programming environment than its previous releases
while utilizing the advantage of OpenGL technology
still. We believe we could achieve the first step of
turning around and hopefully this release will attract
more creators. And we keep improving DIPS
programming environment furthermore, especially by
introducing more Dlib and Dfx objects, and more
sophisticated examples such as DIPS GLSL realizes.

We hope DIPS supports various creators who are
practicing and who wish to practice interactive
multimedia art. The DIPS3 version 2 for Max/MSP can
be obtained from ‘http://dips.dacreation.com’.

8. REFERENCES

[1] Matsuda, S.,Rai, T., "DIPS : the real-time
digital image processing objects for Max
environment”, in Proceedings of the
International Computer Music Conference
2000.

[2] Matsuda, S., Miyama, C., Ando, D., Rai, T.,
"DIPS for Linux and Mac OS X”, in
Proceedings of the International Computer
Music Conference 2002.

[3] Matsuda, S., Rai, T., “DIPS : the real-time
digital image processing objects for Max
environment”, in Proceedings of the
International Computer Music Conference
2000.

[4] OpenGL Architecture Review Board, Shreiner,
D., Woo, M., Neider, J., Davis, T.,(2005),
OpenGL(R) Programming Guide: The Official
Guide to Learning OpenGL, Version 2(5th ed.),
Addison-Wesley.

[5] OpenGL Architecture Review Board, Editor :
Shreiner, D.,(2004). OpenGL(R) Reference
Manual: The Official Reference Document to
OpenGL, Version 1.4(4th ed.). Addison-
Wesley.

[6] Miyama, C., Rai, T., Matsuda, S., Ando, D.,
Introduction of DIPS Programming Technique,
in Proceedings of the International Computer
Music Conference 2003.

[7] J.Rost, R., M.Kessenich, J., Lichtenbelt, B.,
Malan, H., Weiblen, M. Bailey, M.,(2006),
OpenGL(R) Shading Language(2nd ed.),
Addison-Wesley.

[8] Apple Inc., Apple Developer Connection : Core
Image Programming Guide.,(2005) http://
developer.apple.com/documentation/
GraphicsImaging/Conceptual/CoreImaging/
index.html

 179

